A constant vector is a vector whose magnitude and direction do not change with respect to time or any other variable. This means that each of its components remains constant.
Definition: A vector v is constant if dv/dt = 0, where t represents time.
Components: In a 2D Cartesian coordinate system, a constant vector can be represented as v = (a, b), where 'a' and 'b' are constants. Similarly, in 3D, v = (a, b, c), where a, b, and c are constants.
Examples:
Applications: Constant vectors are used as a starting point in many physical and mathematical operations, such as calculating the resultant vector and establishing the coordinate system.
Operations: Scalar multiplication and vector addition of constant vectors result in another constant vector.
Ne Demek sitesindeki bilgiler kullanıcılar vasıtasıyla veya otomatik oluşturulmuştur. Buradaki bilgilerin doğru olduğu garanti edilmez. Düzeltilmesi gereken bilgi olduğunu düşünüyorsanız bizimle iletişime geçiniz. Her türlü görüş, destek ve önerileriniz için iletisim@nedemek.page